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1 Introduction

Gradient based optimisation techniques are often used to solve optimisation problems
that arise in machine learning. In many machine learning problems, the exact gradient
of the optimal function is difficult/impossible to compute, so an approximation to the
gradient is used instead. In the report, I shall discuss a stochastic gradient scheme that
is presented in [Borkar et al., 2015]. This scheme is particularly suited for estimating
the gradients of high-dimensional functions, when there is no explicit formula for the
objective function or its gradient. The scheme uses two central concepts; the theory
of Spall’s Simultaneous Perturbation, and the theory of Compressive Sensing.

After presenting the theory behind this scheme, I shall discuss a few applications where
this estimate of the gradient might be useful. The first application is in manifold learn-
ing or non-linear regression. Here, the estimate of the gradient is used to approximate
the ‘gradient outer product matrix’, whose null space is the tangent space of the man-
ifold. A second application is in reinforcement learning, where the the strategy of
policy iteration involves calculating the gradient of the cost function with respect to
the policy at each step.

2 Sparsity of high-dimensional gradients

A central idea used in the algorithm of [Borkar et al., 2015] is the fact that gradients
of high-dimensional functions (functions with a large number of input variables) are

1



nearly sparse. In other words, The gradient can be well approximated by a sparse
vector.

The intuition behind this claim is as follows. Consider a vector x ∈ Rn, with ‖x‖2 = L.
Then it is not possible for each component of the gradient to be larger than L/

√
n,

else the norm constraint would be violated. If L <<
√
n, then most of the components

must be quite close to zero. If we have a restriction that our objective function f is
L-Lipschitz continuous, then ‖∇f(x)‖2 ≤ L.

In the context of gradient descent, the Lipschitz condition (or equivalently, the bound
on the norm of the gradient is quite reasonable if we restrict ourselves to a small
neighbourhood around a local minima. The Lipschitz assumption is also reasonable
to make in the context of non-linear regression. If we wish to approximate our data
as Y = f(X) + e, (where e denotes the noise/error), then it is reasonable to assume
that the function f(X) is L-Lipschitz for some reasonably small L, otherwise we might
overfit the data.

3 The gradient estimation algorithm

The gradient estimation algorithm that is discussed in [Borkar et al., 2015] is useful
in scenarios when there is no explicit formula for the gradient of the objective func-
tion. Such a situation arises in both reinforcement learning and manifold learning, as
discussed in later sections. Rather, it is assumed that we are given a black-box into
which we can feed in the arguments of the function and get the corresponding output.

Based on the black-box model, the simplest way to approximate the gradient is :

∇f(x) ≈

(
f(x+ ∆x1)− f(x)

∆x1
, . . .

f(x+ ∆xn)− f(x)

∆xn

)
However, this method method involves n + 1 function evaluations and could be com-
putationally expensive, if each function evaluation is time-consuming.

3.1 Spall’s Simultaneous Perturbation

Spall’s simultaneous perturbation method is a trick used to approximate the gradi-
ent using only two function evaluations [Spall, 1992]. Although such an estimate is
bound to have a large error, it has certain properties that make it useful for certain
applications. Below, we discuss how this method is used for stochastic gradient descent

Let us define {∆i(k), 1 ≤ i ≤ n, k ≥ 0} to be i.i.d Rademacher variables, which are
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either +1 or −1 with equal probability. We also define ∆(k) , (∆1(k), . . . ,∆n(k)).
By Taylor’s theorem, we have for some small δ > 0:

∇̂f(x(k))i =
f(x(k) + δ∆(k))− f(x(k))

δ∆i(k)
≈ ∂f

∂xi
(x(k)) +

∑
j 6=i

∂f

∂xj
(x(k))

∆j

∆i
i∀ i ∈ [n]

(1)

The key point is that In the above equation, the numerator is the same for all com-
ponents, and the denominator is either +δ or −δ. Thus, ignoring the sign, all the

components of ∇̂f are the same, which means that ∇̂f is a rather poor estima-
tor of ∇f in most cases. However, from our definitions, we observe that ∀ j 6= i,

E
[
∂f
∂xj

(x(k))
∆j

∆i

]
= 0. This means that ∇̂f(x(k)) is an unbiased estimator of∇f(x(k)).

The theory of stochastic gradient descent [Bottou et al., 2016] tells us that an unbi-
ased estimator of ∇f(x) is ‘good enough’ for the stochastic gradient descent (SGD)
algorithm to converge to the optimal value. However, Theorems 4.6 and 4.7 in [Bottou
et al., 2016] (covered in the course) also tell us that the rate of convergence of SGD
depends upon the step-size chosen, which in turn depends inversely upon the variance
of the noise of the estimate. Thus, it is useful to improve the estimate of the gradient
from the one given in (1).

The estimator can be made more accurate by repeating the calculations in (1) multiple
times, for independent realisations of the perturbation vector ∆(k) and averaging the
values. However, this would lead to multiple function evaluations, which would be
computationally expensive and would defeat the purpose of Simultaneous Perturba-
tion. An alternative is to use methods from compressive sensing, which is a well-known
and widely used method to retrieve sparse, high-dimensional vectors from noisy ob-
servations.

3.2 Compressive sensing

Here, we are going to use a method of compressive sensing that was first introduced in
the paper [Candes and Tao, 2006]. In the most basic form, the problem formulation
is as follows:

Let x be a vector in Rn, which is unknown. Let A be an m×n matrix, which is known.
Also, let y = Ax, and y is known. Then we can recover x by solving the optimisation
problem:

x = arg min
z∈Rn

‖z‖1 s.t. Az = y (2)

provided m ∼ nlog(n/s) and A satisfies the ‘Restricted Isometry Property’ (RIP) as
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specified in [Candes and Tao, 2006]. It is known that matrices with i.i.d. Gaussian
entries satisfy the RIP with very high probability.

The above formulation can be modified to accommodate noisy measurements of y.
The exact formulation of the problem is borrowed from [Foucart and Rauhut, 2013].

Let A be an m × n matrix with RIP, and x be an s-sparse vector. Let y = A∇f + ξ
s.t. ‖ξ‖2 ≤ η be given. If for some 0 < ε < 1 and τ > 0, m satisfies

m2

m+ 1
≥ 2s

(√
log(en/s) +

√
log(ε−1)

s
+

τ√
s

)2

Then w.p. > 1− ε, ‖∇̂f −∇f‖2 ≤ η/τ , where

∇̂f = arg min
z∈Rn

‖z‖1 s.t. ‖y −Az‖2 ≤ η (3)

3.3 The algorithm

The above theorem can be used for coming up with a good estimate of the gradient
of our objective function in the following way. Essentially, we first compute (a noisy
estimate of) A∇f(x), and then use the compressive sensing optimisation problem to
find a good estimate of∇f(x). To avoid excess computation time, A∇f(x) is computed
using Spall’s Simultaneous perturbation technique.

The algorithm is specified step-wise below:

• Select A = (aij)m×n with Gaussian entries

• Compute yi =
f(x+δ

∑
∆jaj)−f(x)
δ∆i

for i = 1, . . . ,m

• Repeat and average over yi k times to get ȳi

• ȳ = (ȳ1, . . . , ȳm) = A∇f(x) + η

• Solve minz∈Rn ‖z‖1 s.t. ‖y −Az‖2 ≤ η

• Output ∇̂f(x)
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3.4 Trade-offs

(this comment is not there in the paper [Borkar et al., 2015]. ) In (3), it may seem
that we can increase the accuracy of our gradient estimate greatly by choosing τ to be
as large as possible. The fact that m grows as τ2 does not seem to be a hindrance as
the vector A∇f(x) can be calculated with only two function evaluations, irrespective
of its dimension. However, the noise in the observations increases as the dimensions of
A∇f(x) increases. This can be inferred by the growing number of terms in the noise
expression in (1) with n. Thus, as m increases, η increases in (3).

4 Application to reinforcement learning

Consider the following setting in reinforcement learning, which is identical to that of a
Markov Decision Process, except that the state-transition probabilities and rewards are
not known. Consider the case of infinite horizon. The aim of reinforcement learning is
to choose the best stationary policy, i.e., the best decision at each state that will lead
to the lowest long-run discounted cost. Every policy can be represented by a vector
which is the size of the state-space (which is assumed to be finite but large). Assume
that the set of available actions in each state is a continuous interval. Thus, the long
run cost as a function of policy can be viewed as a function C : Rn → R, which is
unknown, but can be simulated or obtained via experimentation. An arbitrary initial
policy can be chosen, and the optimal policy can be chosen via policy gradient descent.
This application is mentioned in [Borkar et al., 2015], with additional references given
as [Sutton et al., 1999] and [Zhao et al., 2011].

Note: Due to my incomplete understanding, I could not summarise the idea behind
manifold learning/non-linear regression
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